
Notice: You cannot copy or search for text in this PDF file, because this PDF file is converted from the scanned image of printed materials.

P1 98.2

MOS FIELD EFFECT TRANSISTOR **2SJ180**

P-CHANNEL MOS FET FOR HIGH-SPEED SWITCHING

OUTLINE DIMENSIONS (Unit : mm)

The 2SJ180, P-channel vertical type MOS FET, is a switching device which can be driven directly by the output of ICs having a 5 V power source.

As the MOS FET has low on-state resistance and excellent switching characteristics, it is suitable for driving actuators such as motors, relays, and solenoids.

FEATURES

- Directly driven by ICs having a 5 V power supply.
- Has low on-state resistance $R_{DS(on)} = 1.5 \Omega MAX. @V_{GS} = -4.0 V, I_D = -0.5 A$

 $R_{DS(on)} = 1.0 \Omega MAX. @V_{GS} = -10 V, I_D = -0.5 A$

- Voltage drive at logic level ($V_{GS} = -4 V$) is possible.
- Bidirectional zener diode for protection is incorporated in between the gate and the source.
- Inductive loads can be driven without protective circuit thanks to the improved breakdown voltage between the drain and source.

QUALITY GRADE

Standard

Please refer to "Quality grade on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

(Diode in the figure is the parasitic diode.)

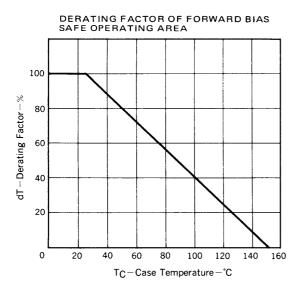
Source(S)

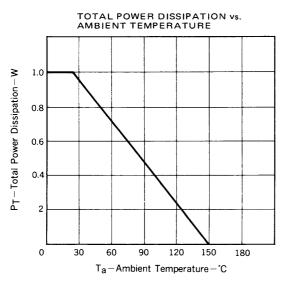
Gate(G)

ABSOLUTE MAXIMUM RATINGS ($T_a = 25$ °C)

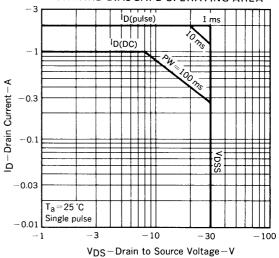
CHARACTERISTIC	SYMBOL	RATINGS	UNIT	TEST CONDITIONS
Drain to Source Voltage	V _{DSS}	-30	V	V _{GS} = 0
Gate to Source Voltage	V _{GSS}	∓20	V	V _{DS} = 0
Drain Current	ID(DC)	∓1.0	Α	
Drain Current	ID(pulse)	∓2.0	А	PW ≤ 10 ms, Duty Cycle ≤ 50 %
Total Power Dissipation	PT	1.0	w	
Channel Temperature	T _{ch}	150	°C	
Storage Temperature	T _{stg}	-55 to +150	°C	

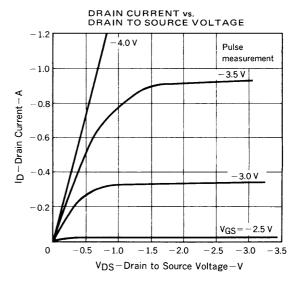
Document No. TC-2318 (0.D.No. TC-7776A) Date Published April 1991 M Printed in Japan

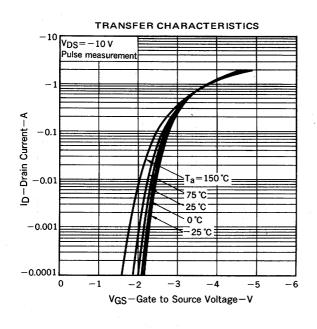

© NEC Corporation 1991

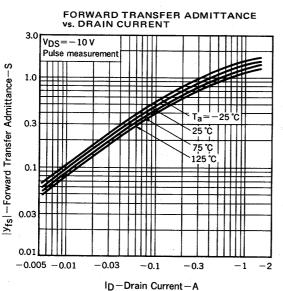

2SJ180

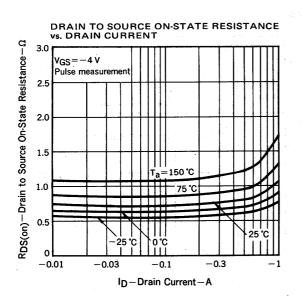
ELECTRICAL CHARACTERISTICS (T_a = 25 °C)

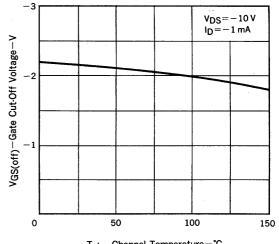

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS
Drain Cut-off Current	IDSS			-10	μA	V _{DS} =30 V, V _{GS} = 0
Gate Leakage Current	IGSS			Ŧ10	μA	V _{GS} = ∓20 V, V _{DS} = 0
Gate Cut-off Voltage	VGS(off)	-1.0	-2.2	-3.0	v	V _{DS} = -10 V, I _D = -1 mA
Forward Transfer Admittance	ly _{fs} l	0.4			S	$V_{DS} = -10 \text{ V}, 1_{D} = -0.5 \text{ A}$
Drain to Source On-State Resistance	R _{DS(on)1}		0.8	1.5	Ω	V _{GS} = -4.0 V, I _D = -0.5 A
Drain to Source On-State Resistance	R _{DS(on)2}		0.4	1.0	Ω	V _{GS} = -10 V, I _D = -0.5 A
Input Capacitance	Ciss		160		рF	V _{DS} = –10 V, V _{GS} = 0, f = 1 MHz
Output Capacitance	Coss		130		рF	
Feedback Capacitance	C _{rss}		3		pF	
Turn-On Delay Time	^t d(on)		130		ns	V _{GS(on)} = -4 V, R _G = 10 Ω, V _{DD} = -5 V, I _D = -0.3 A, R _L = 1.5 Ω
Rise Time	t _r		380		ns	
Turn-Off Delay Time	^t d(off)		95		ns	
Fall Time	t _f		140		ns	

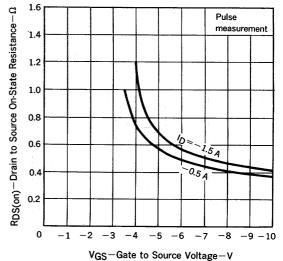

TYPICAL CHARACTERISTICS (T_a = 25 $^{\circ}$ C)



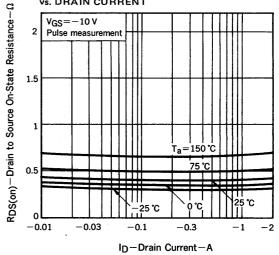



FORWARD BIAS SAFE OPERATING AREA



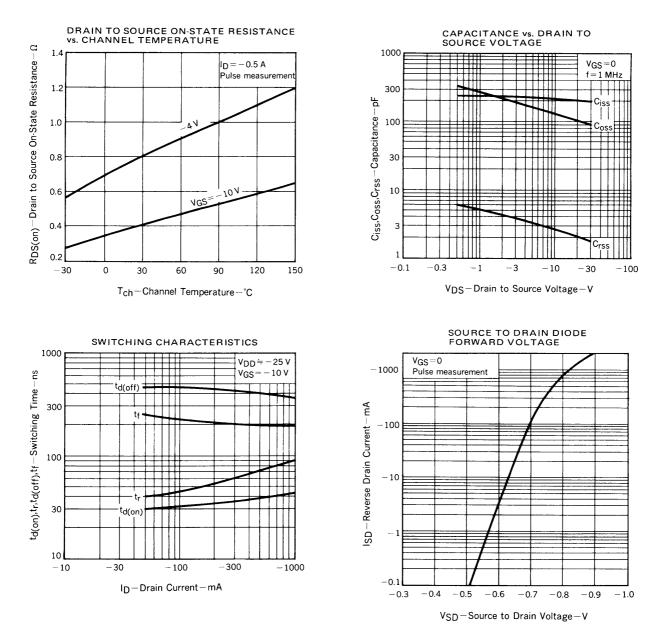


GATE TO SOURCE CUTOFF VOLTAGE vs. CHANNEL TEMPERATURE

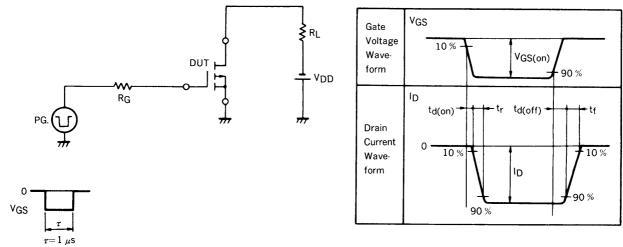


Tch-Channel Temperature-°C

DRAIN TO SOURCE ON-STATE RESISTANCE vs. GATE TO SOURCE VOLTAGE



DRAIN TO SOURCE ON-STATE RESISTANCE vs. DRAIN CURRENT



З

2SJ180

SWITCHING TIME MEASUREMENT CIRCUIT AND CONDITIONS

Duty Cycle≦1 %

4

RECOMMENDED SOLDERING CONDITIONS

Solder this product under the following recommended conditions. For soldering methods or soldering conditions other than those recommended in the table, please consult our NEC salespeople.

Insert type

Soldering method	Soldering conditions	Recommended condition code		
Waya coldoring	Solder bath temperature: 260 °C max.			
Wave soldering	Soldering time: 10 sec max.			

NEC

[MEMO]

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

The devices listed in this document are not suitable for use in the field where very high reliability is required including, but not limited to, aerospace equipment, submarine cables, unclear reactor control systems and life support systems. If customers intend to use NEC devices for above applications or those inted to use "Standard", or "Special" quality grade NEC devices for the applications not intended by NEC, please contact our sales people in advance.

Application examples recommended by NEC Corporation

Standard: Data processing and office equipment, Communication equipment (terminal, mobile). Test and Measurement equipment, Audio and Video equipment, Other consumer products, etc.

Special: Automotive and Transportation equipment, Communication equipment (trunk line), Train and Traffic control devices, industrial robots, Burning control systems, antidisaster systems, anticrime systems etc.